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Abstract 

 

We examined the potential effects of warming winters resulting from climate change on Pacific 

Salmon in Prince William Sound, AK. Winter air temperatures in this area are projected to 

increase 3oc. The corresponding increase in water temperature was not uniform across the study 

but varied widely depending on water features. About 15% of the watersheds will moderately to 

highly susceptible to these changes, which will affect the time of spawning, development of 

eggs, and the time of and size at emergence of salmon fry. Additionally, fish that spawn earliest 

are likely to be most affected. This work will aid policy makers and managers to better 

understand the potential impacts of climate in Prince William Sound and to develop appropriate 

policies, practices, such as managing for population diversity rather than numbers, and 

adaptation programs to meet the challenges of a changing climate. 

 

 

Introduction 

Climate change poses a major challenge to Pacific salmon (Oncorhynchus spp.) and the 

policy makers and managers responsible for their persistence. Warmer summer temperatures will 

reduce the suitability of freshwater habitats (Crozier and Zabel 2006, Isaak et al. 2010), 

potentially reducing growth rates, increasing disease susceptibility, and altering interactions with 

competitors and predators.  Increased winter temperatures in the NWFP area will result in more 

precipitation falling as rain rather than snow. Watersheds that historically developed a seasonal 

snowpack will experience a trend from snow to rain, resulting in more rapid runoff in winter and 

early spring when snow usually falls, and lower late-spring and early-summer flows owing to 

reduced snowmelt (Hamlet and Lettenmaier 2007, Tague and Grant 2009), coupled with 

substantial reductions in summer low flows. Chilcote et al. (2017) estimated that 8.5% of the 
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watersheds on the Chugach National Forest in south central Alaska were vulnerable to similar 

changes in their hydrographs. 

Another, but not well recognized, consequence of warmer winters is an increase in water 

temperature and the subsequent effects on developing eggs and embryos and phenology (ie., 

timing of life-history events) of Pacific salmon in northern latitudes.  The rate of development of 

eggs and the size of fish at emergence is related to water temperature. Egg development depends 

on the accumulation of degree days (Neuheimer and Taggart 2007). Even slight increases in 

temperature can accelerate rate of development and ultimately result in earlier time of emergence 

from the gravel (McCullough 1999). This can result in a mismatch with the availability of prey 

and other food resources and required habitats. It can also result in smaller individuals at 

emergence because metabolic costs decrease the efficiency of yolk use (Beacham and Murray 

1990, Elliott and Hurley 1998); smaller fish are more susceptible to displacement at higher 

flows. 

The climate in Prince William Sound is anticipated to warm by 3 °C during the next 50 

years (Fresco and Floyd 2017). Importantly, the greatest warming is anticipated in winter, 

pushing monthly mean air temperatures above freezing year-round near sea level. The extent of 

change in water temperatures in given area is likely to vary widely depending on local features. 

Elevation, water sources, and presence of glaciers, lakes and wetlands all influence water 

temperature (Adelfio et al. 2019). Understanding the extent of potential changes in winter water 

temperatures is critical to understand the potential vulnerability of population of Pacific Salmon 

to climate change and the development of adaptation and mitigation programs.  The goal of this 

study was to assess the potential effects of changes in winter temperatures on water temperatures 

in streams in Prince William Sound, AK, a major producer of salmon locally and globally 

(Chilcote et al. 2017). 

Study Area 

The location of the study area and watersheds where air and water temperature were 

measured are shown in Fig. 1. The region’s subarctic maritime climate is characterized by cool 

temperatures, a small annual temperature range, and abundant precipitation (Bieniek et al. 2012).  

The surrounding terrain is mountainous and high-relief, rises of over 4,000 m above sea level in 

less than 20 km. Tidewater glaciers and large icefields are present on the mainland, particularly 

along the northern and western coastline where the mountains are highest.  

The surficial geology is most commonly sedimentary or igneous bedrock from the 

Eocene and Paleocene or unconsolidated glacial deposits from the Holocene and Pleistocene 

(Wilson et al. 2008). Below 600 m elevation, mature stands of Sitka spruce (Picea sitchensis), 

Mountain hemlock (Tsuga mertensiana), and, on the eastern side of PWS, Western hemlock (T. 

heterophylla) are the primary late successional vegetation species (Cooper, 1942). Sphagnum- or 

Carex-dominated peatlands, collectively known as “muskegs,” are also common and widespread 

in undisturbed, late successional piedmont areas. Active glacier outwash plains and other 

disturbed areas are often thickly vegetated with brush, particularly Sitka alder (Alnus viridis).       

 

See Appendix A for further details.  

 

Projecting Thermal Sensitivity across Prince William Sound 
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We established 15 monitoring locations at known salmon spawning sites in PWS during the 

summer of 2013 (Figure 1). The study watersheds range from the Gulf of Alaska coast on 

Montague and Hinchinbrook Islands, to large glaciated mainland watersheds draining into 

northern PWS. The watersheds were distributed from east-to-west, across the PWS climate 

gradient. 

 

 We collected hourly air temperature and surface (stream) and shallow streambed water 

temperature data from 1 October, 2013 until 1 October, 2017.  We recorded air temperature with 

a HOBO Pendant data logger housed in a gill radiation shield produced by the Onset Computer 

Corporation. We recorded surface water temperature at the bottom of the water column with 1 

HOBO Pro v2 data logger housed in a 15-cm-long section of 4.1-cm internal diameter 

galvanized steel pipe to shade the sensor and protect it from physical damage.  \We measured 

streambed water temperature 35 to 50 cm into the streambed using a TidbiT v2 data logger 

installed directly into the substrate after boring a hole with a custom-made driver (Zimmerman 

and Finn 2012). We deployed two streambed loggers at each site.  

 

We downloaded data loggers every 6 to 12 months throughout the study period. We 

removed erroneous values, including unreasonable outliers (which suggest sensor error) and 

abnormally high hourly variance (>3°C), suggesting the sensor was exposed to air. Occasional 

data gaps occurred when streambed data loggers were exposed to surface water, surface water 

loggers were exposed to air, and when data loggers were lost, malfunctioned, or were not 

downloaded in 2018. The most prolific data gaps were for air temperature. Cold winter air 

temperatures reduced battery longevity, resulting in data logger failure in many cases. 

 

Statistical relations between air and water temperatures and watershed features were then 

used to determine the potential sensitivity of watershed to changes in future temperatures and the 

impacts on developing eggs and embryos of Pacific salmon.  

 

See Appendix A for details on temperature sensitivity analysis. 
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Figure 1. Watersheds above the 15 monitoring sites in Prince William Sound, Alaska. Note that two sites are 

located at Solf Lake and cannot be shown at this scale. One site is located at the primary lake inlet; the other is in a 

bedrock notch at the lake outlet. See Table 1 for descriptive statistics for each watershed. 

 

Results 

Direct analyses of the air temperature data showed steep gradients during the winter  

“incubation period” (here defined as 1 October through 30 April) of Pacific salmon found in the 

study streams (Chum (O. keta), Pink (O. gorbuscha), and Coho (O. kisutch) and much shallower 

gradients  during the summer (May through September) (Figures 2 and 3 of Appendix A). There 

were also substantial inter-annual variations in incubation period air temperatures among both 

sites and climate categories, with water years 2014 and 2017 (WY2014, etc.) tending to be 1.5 to 

2.5 degrees colder than WY2015 and WY2016. 
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 We developed this relation to develop a predictive model (Figure 22) to project thermal 

sensitivities for Hydrologic Unit Code 6 (HUC6) watersheds of Prince William Sound based on 

features of a watershed (Fig. 2). The results suggest that a 14.3% (34 out of a total of 237 

watersheds analyzed) of the watersheds to be moderately to highly likely thermally sensitive, 

meaning that these watershed are likely to experience increases in temperature during the 

incubation period.   

Potential impacts of climate change on duration of egg incubation: 

To better anticipate potential climate change impacts on the duration of incubation for 

Coho Salmon eggs, we modeled incubation during the study period and under the two warming 

scenarios. Scenario 1 assumed that autumn water temperatures would increase but that snow 

would continue to accumulate and spring temperatures would increase approximately 1oC. 

Scenario 2 assumed a warm autumn and winter so that water temperatures increased that resulted 

in a 2.6oC increase. 

The future warming scenarios corresponded with a significant reduction in duration of 

incubation. The mean duration of incubation was 57 days shorter under Scenario 1, the 

warming−snow scenario, as compared to the study period. The eggs of early spawning fish were 

most affected (a 70 day reduction) while eggs of late spawning fish were least affected (a 41 day 

reduction), indicating that for Scenarios 1 and 2 water temperatures warmed more in late 

September and early October than March or April.  

Springtime warming was greater under Scenario 2, the warming−no snow scenario, when 

the mean duration of incubation was reduced by 65 days as compared to the study period. 

Duration of incubation was nearly identical under the 2 scenarios for the eggs of early spawning 

fish because alevin were projected to emerge from the gravel during the winter, before melting 

occurred under the Scenario 1. The offspring of mid spawning fish typically emerged earlier 

under the Scenario 2 as compared to the Scenario 1, but the difference was not statistically 

significant. For the offspring of late spawning fish, duration of incubation was significantly 

reduced under Scenario 2 as compared to Scenario 1.  

 

 

Figure 2: Project thermal sensitivities for Hydrologic Unit Code 6 (HUC6) watersheds of Prince 

William Sound based on observed stream water sensitivities to changes in observed air 

temperatures between the water years 2016 (warm) and 2017 (cold). 
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Implications 

We used the predictive model to project thermal sensitivities for Hydrologic Unit Code 6 

(HUC6) watersheds of Prince William Sound. Where HUC boundaries are coincident with the 

land-ocean interface, the HUC usually includes many smaller, disconnected watersheds, each 

with its own outlet to the ocean. Thus, the landscape predictor models developed for discrete 

watersheds give only a general potential thermal sensitivity for all watersheds within each HUC. 

Individual watersheds might have very different thermal sensitivities.  

It is crucial to examine the consequences of changing environmental conditions on a species 

phenology in order to identify potential mismatches in phenology and better understand effects 

(Miller-Rushing et al. 2010).  Emergence timing is coupled with the availability of the 

abundance of aquatic invertebrates (Campbell et al. 2019). Changes to thermal and hydrologic 

regimes that disrupt life-history timing cues can result in mismatches between fish and their 

environments or food resources, adversely affecting survival (Angilletta et al. 2008, Letcher et 

al. 2004). Thus, monitoring programs need to be able to detect changes in timing of life-history 

events to be able to better capture the response to the more nuanced effects of climate change.   

If emergence date diverges from optimal conditions, then selection should favor 

compensatory changes in spawning date or temperature-specific development rate of embryos. 

Spawning date is likely to evolve, particularly in the short term, owing to its high heritability in 

salmonids (Quinn et al. 2000; Hard 2004; Hendry and Day 2005; Carlson and Seamons 2008). 

Changes in egg features and development rate may occur over the longer term because their 

heritability is lower (Hebert et al. 1998; Kinnison et al. 1998).  

There are important ecological implications of climate-related changes in the time and size of 

fish at emergence. Earlier emergence can result in an extended growing season, a benefit that can 

lead to increased fitness. Holtby (1988) found that an increase of 1.3 °F (0.7 °C) in winter water 
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temperatures following timber harvest in Carnation Creek on the west coast of Vancouver Island, 

British Columbia, resulted in Coho Salmon emerging 6 weeks earlier. Size at age increased 

because of the extended growing season, resulting in more fish completing their freshwater-

rearing life history in one year rather than two. Coho salmon in Carnation Creek also smolted 

and moved to sea about 2 weeks earlier following timber harvest (which raised stream 

temperatures); however, marine survival declined, possibly as a result of the decoupling of the 

timing of smolt migration from marine plankton blooms (Holtby and Scrivener 1989). Similarly, 

warmer winter temperatures increased the length of the growing season of recently emerged 

Sockeye Salmon in southwest Alaska. Like Coho Salmon in Carnation Creek, Sockeye Salmon 

grew faster, and more underwent smolt transformation at age 1+ during warm periods rather than 

at age 2+ in cooler periods (Schindler et al. 2005). However, age-1+ smolts were smaller than 

age-2+ smolts and were expected to have decreased marine survival.  

Managers and policy makers need to recognize that there are likely to be changes in the time 

of return of populations, particularly, in the more vulnerable watersheds.  This will require 

potential adjustments in the timing of harvest, monitoring and escapement programs, particularly 

in the more thermally sensitive watersheds.  To ensure that populations have the maximum 

potential to adapt to changes in their freshwater ecosystems, management should be directed at 

maintaining and enhancing life-history and genetic diversity not simply focusing on maintaining 

population numbers.  
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Appendix A 

METHODS AND RESULTS: 

Study Area: 

The fjords and islands of Prince William Sound (PWS) (Figure 1) form a unique and 

sheltered inland marine environment entrenched in the exposed northern coastline of the Gulf of 

Alaska (Mann and Hamilton, 1995). The surrounding terrain is mountainous and high-relief. The 

highest peak in the area, Mt. Marcus Baker, rises over 4,000 m above sea level in less than 20 

km. Tidewater glaciers and large icefields are present on the mainland, particularly along the 

northern and western coastline where the mountains are highest. Nearly all glaciers in the region 

have been retreating since the end of the 19th century (Calkin et al. 2001). The islands are de-

glaciated, but perennial snowfields persist on north- and west-facing aspects of the highest peaks 

(600-900 m) on Montague, Hinchinbrook, and Knight Islands.   

The surficial geology is most commonly sedimentary or igneous bedrock from the 

Eocene and Paleocene or unconsolidated glacial deposits from the Holocene and Pleistocene 

(Wilson et al. 2008). Below 600 m elevation, mature stands of Sitka spruce (Picea sitchensis), 

Mountain hemlock (Tsuga mertensiana), and, on the eastern side of PWS, Western hemlock (T. 

heterophylla) are the primary late successional vegetation species (Cooper, 1942). Sphagnum- or 

Carex-dominated peatlands, collectively known as “muskegs,” are also common and widespread 

in undisturbed, late successional piedmont areas. Active glacier outwash plains and other 

disturbed areas are often thickly vegetated with brush, particularly Sitka alder (Alnus viridis).       

The region’s subarctic maritime climate is characterized by cool temperatures, a small 

annual temperature range, and abundant precipitation (Bieniek et al. 2012). During the 1981-

2010 climate period, the mean annual sea level air temperatures were 3 to 5 °C across PWS. 

Most locations likely received around 200 cm of precipitation at sea level in an average year, 

with over three times as much precipitation falling at high elevation (Hayward et al. 2017). On a 

local scale, the influences of mountainous terrain, continental air masses, and glaciers can create 

steep environmental gradients in temperature and precipitation, particularly in the autumn and 

winter months (Gay and Vaughan, 2001). For example, Valdez typically receives half as much 

precipitation as Cordova, located 70 km away (Cooper, 1942). On the regional scale, observed 

variability in winter temperature and precipitation appears strongly correlated with the strength 

and position of the Aleutian Low (Bieniek et al. 2012) and sea surface temperature patterns in 

the North Pacific (Mantua et al., 1997).    

The climate is anticipated to warm by 3 °C during the next 50 years (Fresco and Floyd 

2017). Importantly, the greatest warming is anticipated in winter, pushing monthly mean air 

temperatures above freezing year-round near sea level. This warming will increase glacial 

ablation and reduce low elevation snowpack and seasonal ice cover on lakes and rivers, likely 

changing freshwater temperature and discharge patterns in PWS.  
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Figure 1. Watersheds above the 15 monitoring sites in Prince William Sound, Alaska. Note that two sites are 

located at Solf Lake and cannot be shown at this scale. One site is located at the primary lake inlet; the other is in a 

bedrock notch at the lake outlet. See Table 1 for descriptive statistics for each watershed. 
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Table 1: Watershed descriptive metrics for 15 study sites located in Prince William Sound, Alaska. 

Site 
Climate 

Category 
Establish 

Year Longitude Lattitude 
Area 
(km2) 

Mean 
Elev       
(m) 

Lakes   
and  

Ponds 

Perennial 
Ice and 
Snow 

Woody, 
Emergent, 

& 
Herbaceous 

Wetlands 

 Observed 
Thermal 

Sensitivity 

Best 
Model 

Predicted 
Sensitivity 

7DADA 
with     
4o C 

warming 

          (km2) (m) (%) (%) (%) (oC / oC) (oC / oC) (oC) 

Stump Lake Outlet Mild 2013 147.45 59.87 12.26 79 5 0 40 0.93 1.21 25.00 
Solf Lake Inlet Cool 2013 147.73 60.41 3.21 310 1 0 0 0.13 0.40 9.26 
Solf Lake Outlet Cool 2012 147.73 60.43 5.25 243 12 0 1 0.70 0.70 18.33 
Hook Point Creek Cool 2013 146.26 60.35 1.16 44 0 0 49 1.14 0.69 12.61 
Shelter Bay tributary Cool 2012 146.64 60.43 10.65 235 1 0 10 0.47 0.48 10.15 
Hell's Hole Tributary Cool 2013 146.39 60.72 1.79 125 4 0 46 0.65 0.73 13.49 
Sheep River Cold 2013 145.90 60.72 30.88 638 1 15 0 0.22 0.35 11.85 
Eagle Creek Cold 2013 146.57 60.46 8.33 79 1 0 41 0.56 0.72 14.47 

Koppen Creek Cold 2013 145.90 60.71 16.44 413 0 0 0 0.43 0.34 8.25 
Rude River Side 
Channel Cold 2013 145.61 60.66 7.31 597 2 21 6 0.22 0.24 9.57 
Olsen Creek Cold 2013 146.18 60.76 25.68 417 0 1 1 0.49 0.48 9.84 
Jack Bay River VCold 2013 146.47 61.00 73.00 632 0 12 0 0.50 0.52 10.19 
Pigot Bay Channel VCold 2013 148.40 60.86 3.75 254 0 1 2 0.23 0.07 5.36 
Steller Jay Creek VCold 2016 148.68 60.44 6.29 629 0 20 0  0.29  
Jackpot River VCold 2013 148.25 60.42 14.70 260 6 0 3 0.25 0.53 17.59 

AVERAGE =         14.71 330 2 5 13 0.49 0.52 12.57 
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Study Catchment Characteristics: 

We established 15 monitoring locations at known salmon spawning sites in PWS during the 

summer of 2013 (Figure 1). The study watersheds range from the Gulf of Alaska coast on 

Montague and Hinchinbrook Islands, to large glaciated mainland watersheds draining into 

northern PWS. The watersheds were distributed from east-to-west, across the PWS climate 

gradient. 

The watershed selection was not made randomly. Rather, we knew that we only had 

sufficient resources to sample a relatively small number of watersheds, and we wanted to make 

sure that our sample included much of the range of watersheds present in PWS, by size, 

elevation, locations, and land cover. We attempted to pick smaller groups of watersheds that 

would allow for comparisons within the group that might be related to their potential sensitivity 

to climate change. A critical factor was the winter mean temperature and the likely shift from 

snow dominated, to rain-on-snow dominated, to rain dominated under a future warmer climate 

(Figure 2). We explicitly built these factors into our site selection.  

We first examined distributed temperature data in order to estimate the likely elevational 

boundaries of the rain-on-snow zone and divided PWS into three zones: 1) the outer-coastal zone 

consisting of the large, outer islands of Montague and Hinchinbrook; 2) a central sound zone, 

north to south, including both islands and deep mainland bays, but excluding large glaciated 

mainland systems and the outer-coastal islands; and 3) a mainland zone consisting primarily of 

large, glacially dominated watersheds. We then analyzed the distribution of watershed area 

within each watershed, divided into 50-m elevation bands in order to classify the climate regime 

for each group of watersheds. 
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Figure 2. Hypsometric curves showing the cumulative distribution of watershed area falling 

across 50-m elevation zones. The present-day rain-on-snow zone is indicated with gray shading. 

Watersheds within each geographic zone have similar winter climate, except for Hell’s Hole, a 

small, lowland-dominated watershed in the central sound that was rain dominated.  

 

Temperature Data Collection: 
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We collected hourly air temperature and surface (stream) and shallow streambed water 

temperature data from 1 October, 2013 until 1 October, 2017.  We recorded air temperature with 

a HOBO Pendant data logger housed in a gill radiation shield produced by the Onset Computer 

Corporation. We recorded surface water temperature at the bottom of the water column with 1 

HOBO Pro v2 data logger housed in a 15-cm-long section of 4.1-cm internal diameter 

galvanized steel pipe to shade the sensor and protect it from physical damage. Deployment 

depths were at least 20 cm, typically 50 to 60 cm, at average summer water flows and the surface 

water at each study site was assumed to be well mixed by turbulent flow. 

We measured streambed water temperature 35 to 50 cm into the streambed using a 

TidbiT v2 data logger installed directly into the substrate after boring a hole with a custom-made 

driver (Zimmerman and Finn 2012). We deployed two streambed loggers at each site. Burial 

depth for Coho Salmon eggs ranges between 8 and 55 cm and is correlated with size of the 

maternal female (van den Berghe and Gross 1984; DeVries 1997). By measuring water 

temperature at the stream bottom and up to 50 cm into the streambed, we bracketed the potential 

range of incubation temperature experienced by eggs at each location. 

We downloaded data loggers every 6 to 12 months throughout the study period. We 

removed erroneous values, including unreasonable outliers (which suggest sensor error) and 

abnormally high hourly variance (>3°C), suggesting the sensor was exposed to air. Occasional 

data gaps occurred when streambed data loggers were exposed to surface water, surface water 

loggers were exposed to air, and when data loggers were lost, malfunctioned, or were not 

downloaded in 2018. The most prolific data gaps were for air temperature. Cold winter air 

temperatures reduced battery longevity, resulting in data logger failure in many cases. 

Using hourly temperature data, excluding days with fewer than 24 measurements, we 

calculated daily mean temperature for each data-logger location at each site. We calculated 

weekly (7-day, “non-rolling”) and monthly mean temperatures for surface-water temperatures at 

each site from the daily mean temperature, excluding weeks with fewer than seven days of data 

and months with fewer than 28 days of data. 
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Analysis of Air Temperature Gradients: 

The first step in our analysis of streams’ thermal sensitivity to changing air temperatures was 

to compile a time series of air temperatures that we could relate to each site where we measured 

water temperature. While we did install air temperature loggers at each site, missing data would 

have prevented a complete analysis of our stream temperature data if we restricted that analysis 

to only air temperatures co-recorded at each site. Therefore, we needed to identify sites with 

similar air temperature regimes that could be averaged together to provide a master record of air 

temperatures. Further, because winter air temperatures exhibit steep environmental gradients 

within Prince William Sound, we did not want to use a single station with a long and complete 

record (e.g., NOAA’s Cordova Station) to analyze water temperatures across all sites.  

We analyzed mean weekly air temperatures over the winter of 2016-17 because this was the 

winter for which we had the fewest sites with missing air temperature data. We also included 

data from 3 NOAA weather stations in this analysis, and the data from the Cordova and Valdez 

stations were later used to augment our site data. Solf Lake data were missing so we repeated the 

PCA analyses using the winter weekly air temperatures from 2013-14, and then conducted a 

simple linear regression to relate the mean PCA scores from Solf Lake with the other sites. This 

regression was then used to back-fill the Solf Lake’s PCA loadings on the first and second 

eigenvectors (Figure 1). Following these analyses, we subdivided our sites into 4 climate 

categories based on uniformly spaced intervals along the PC1 axis (mild, cool, cold, and very 

cold) and generated mean weekly air temperatures for each climate category (Figure 1). 

Direct analyses of the air temperature data showed steep gradients during the winter 

“incubation period” (here defined as 1 October through 30 April) and much shallower gradients  

during the summer (May through September) (Figures 2 and 3). There were also substantial 

inter-annual variations in incubation period air temperatures among both sites and climate 

categories, with water years 2014 and 2017 (WY2014, etc.) tending to be 1.5 to 2.5 degrees 

colder than WY2015 and WY2016 (Tables 1 and 2). The incubation period was also 

characterized by large week-to-week variation in air temperature, in all years, with alternating 

freeze and thaw events, even in the middle of winter (Figure 3).   
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Figure 3: Principle component analysis of air temperature gradients across Prince William 

Sound with the range of sites on PC1 divided into 4 equal length categories (boundaries 

noted by vertical dashed lines); gray shaded regions were not included when determining the 

category boundaries. Data from NOAA’s Cordova (Co-op ID: 998425) and Valdez (Co-op 

ID: 702756) weather stations were included with the field sites because the Stump Lake site 

and all the very cold sites had frequent missing data. NOAA’s Bligh Reef site  (Co-op ID: 

994680) was included in the PCA, but not used in subsequent analyses. 
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Figure 4: Relationship between the first principle component and air temperature averaged for 

each site over the summer (May through September) and the incubation period (October 

through April) Points and x-axis are as in Figure 1 and also include both NOAA’s Bligh Reef 

station (Co-op ID: 994680).  
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Figure 5: Time series of weekly air temperatures averaged for the sites falling in each climate 

category shown in Figure 1. See also Table 2. 
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Table 2: Mean incubation period air temperatures from 3 NOAA weather stations and 14 study 

sites located throughout Prince William Sound. Although averages are given for each year 

with incubation period data, some years will include missing data which may somewhat 

distort the reported average. Some sites had no data within the incubation period of a given 

year so no value is reported (-). Sites are categorized based on a PCA analysis and ranked 

from warmest (Stump Lake) to coldest (Jackpot Lakes) (Figure 1). 

 

Site 
Coop-ID 
Category 

2014 2015 2016 2017 
All-

Year 
Mean 

Bligh Reef 994680 2.60 6.23 5.42 2.85 4.27 
Cordova 998425 2.39 3.69 4.34 2.21 3.16 

Valdez 702756 -1.77 -0.44 0.31 -1.69 -0.90 

Stump Lake Mild 1.85 3.35 4.12 1.51 2.71 

Solf Lake Cool 0.49 1.60 2.67 3.33 2.02 
Hook Point Cool 0.59 2.27 2.73 -0.01 1.40 
Shelter Bay Cool 0.53 2.29 3.20 0.10 1.53 
Hells Hole Cool 0.41 1.67 2.74 -0.14 1.17 
Sheep Bay Cold -0.06 1.33 2.20 -0.45 0.75 

Eagle Creek Cold 0.04 1.02 2.66 -0.46 0.82 
Koppen Bay Cold -0.13 1.12 1.84 -0.88 0.49 
Rude River Cold - 0.94 1.96 -1.06 0.62 
Olsen Bay Cold -0.72 0.45 1.62 -1.35 0.00 

Steller Jay Ck V. Cold - - - -1.77 -1.77 

Jack Bay V. Cold -1.72 -0.56 -1.76 -2.42 -1.62 
Pigot Bay V. Cold -1.32 -0.36 0.82 -2.48 -0.83 
Jackpot 
Lakes V. Cold -2.01 -0.06 -0.33 -2.76 -1.29 

All-Site 
Mean   -0.17 1.16 1.88 -0.63 0.43 

 

Table 3: Mean incubation period air temperatures by temperature category (Figure 1) based on 

the 14 study sites located throughout Prince William Sound and data from the Cordova and 

Valdez weather stations. Although averages are given for each year, some years will include 

missing data which may somewhat distort the reported average.  

 

Category 2014 2015 2016 2017 
All-

Year 
Mean 

Mild 2.28 4.01 4.63 2.19 3.28 

Cool 0.50 1.96 2.83 0.01 1.33 

Cold -0.22 0.96 2.05 -0.84 0.49 

V. Cold -1.75 -0.35 0.27 -2.22 -1.01 
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Thermal Sensitivity Analyses: 

The sensitivity of stream temperatures during the incubation period to changes in air 

temperature was evaluated in several ways. First, we compared the observed differences in 

weekly means of the climate category mean air temperature with the stream temperature 

observed at each site. We focused our comparison between the coldest (WY2017) and warmest 

(WY2016) years that occurred during our study. 

The relationship between mean weekly air temperature and mean weekly surface (or stream) 

water temperature was also analyzed with a variety of regression models. We started with a 4-

parameter logistic regression (Mohseni et al., 1998) and tested the model’s ability to predict 

average daily water temperature during the incubation period. At a few sites, the logistic 

equation failed to converge to a solution – where stream temperatures appeared to be strongly 

controlled by groundwater and the “S-shaped” logistic curve could not be reasonably fit to the 

data. Also, analysis of residuals suggested temperature at many sites displayed hysteresis, such 

that spring-time water temperatures were colder than autumn water temperatures at any given air 

temperature. Consequently, all sites were modeled in 4 ways: 1) non-hysteretic logistic equation; 

2) hysteretic logistic equation; 3) non-hysteretic linear regression; and 4) hysteretic linear 

regression. Our study focused on the winter, or incubation period, thus, for each site, we tested 

the models’ ability to accurately predict observed water temperatures from the observed air 

temperatures over the incubation period.  

We used the Nash-Sutcliffe model efficiency coefficient (NSC; Mantua et al., 2010) to test the 

model fit by comparing observed versus predicted daily mean surface water temperature over the 

duration of the incubation period. Note first that this is a rigorous test, focusing on daily mean 

temperatures over the winter when streams were often frozen. Also note that models fit to full-

year water temperatures, that is, including the summer, usually had much higher NSC (results 

not shown). Finally, we also analyzed the thermal sensitivity for periods when weekly mean air 

temperatures were above zero (Kelleher et al. 2012). 

For each site, we then selected the best model (Figures 6 & 7), based on the NSC objective 

function (Table 4), and using that model, we predicted daily average water temperatures under a 

warmer air regime by adding 4 °C to the daily average air temperature for each day of the record 

in each of the 4 years of the study. We then divided the change in predicted water temperature 

(predicted from observed air temperature versus predicted from 4 °C warmer air temperature) by 

4 to express the thermal sensitivity as the change in water temperature for each degree C change 

in air temperature (°C/°C; Table 5). The observed thermal sensitivity between WY2016 and 

WY2017 was treated similarly, however the change in the air temperature between years was 

calculated from the average climate category air temperature. The slope of the linear regressions 

did not need to be normalized as it was already in the desired units (°C/°C). 
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Table 4: Model fit statistics comparing observed versus predicted daily mean water temperature 

over the duration of the incubation period based on the Nash-Sutcliffe model efficiency 

coefficient (NSC). The best model fits will have NSC=1. Bold text indicates the best model 

at each site. The 4-parameter logistic (logistic) model did not converge (DNC) to a solution 

at three sites.  

 

Logistic 
non-

hysteretic 
Logistic 

HYSTERETIC 

Linear       
non-

hysteretic 
Linear 

HYSTERETIC 

Site NSC NSC NSC NSC 

Eagle 0.67 0.72 0.52 0.55 

HellsHole 0.71 0.71 0.59 0.59 

HookPt 0.50 0.57 0.42 0.48 

JackBay 0.67 0.69 0.55 0.55 

Jackpot 0.49 0.77 0.38 0.55 

Koppen 0.71 0.75 0.67 0.71 

Olsen 0.64 0.77 0.58 0.69 

Pigot 0.26 DNC 0.25 0.69 

Rude DNC DNC 0.26 0.66 

Sheep DNC DNC 0.56 0.76 

ShelterBay 0.59 0.69 0.53 0.63 

Solf 0.25 0.56 0.17 0.45 

SolfOutlet 0.34 0.53 0.26 0.38 

StumpLake 0.65 0.66 0.60 0.60 

  AVERAGE 0.54 0.68 0.45 0.59 
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Figure 6: Example of the 4-parameter logistic equation using weekly average air temperature to 

predict the weekly average surface, or stream, temperature for Olsen Bay Creek. Yellow 

symbols denote the period of spring-time warming, from beginning of February through the 

end of June; blue symbols denote the period of autumn cooling, from the beginning of July 

through the end of the following January. 
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Figure 7: Example of the linear regression equation using weekly average air temperature to 

predict the weekly average surface, or stream, temperature for Pigot Bay Creek. Note that the 

logistic equation would not converge to a solution for this site and two other sites (Rude 

River and Sheep Creek). Consequently, the linear regression was used. Symbol colors as in 

Figure 6. 
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 Table 5: Summary of stream water thermal sensitivity to changes in air temperature. To 

simplify comparison among sites and metrics, the thermal sensitivity was normalized by the 

change in air temperature and expressed as the change of water temperature, in degrees C for 

a 1-degree C change in air temperature (°C/°C). Thermal sensitivities were analyzed 

separately for the entire incubation period versus the mid-winter period.  

 

  

Incubation Period 
(October - April)  

 
Observed  

NSC on 
mean 
daily 
temp 

Linear 
non-

freezing 

Site 
Climate 

Category (oC / oC) (oC / oC) (oC / oC) 

StumpLake Mild 0.93 1.21 1.34 
Solf Cool 0.13 0.40 0.50 

SolfOutlet Cool 0.70 0.70 1.00 
HookPt Cool 1.14 0.69 0.77 

ShelterBay Cool 0.47 0.48 0.55 
HellsHole Cool 0.65 0.73 0.86 

Sheep Cold 0.22 0.35 0.38 
Eagle Cold 0.56 0.72 0.93 

Koppen Cold 0.43 0.34 0.36 
Rude Cold 0.22 0.24 0.25 

Olsen Cold 0.49 0.48 0.55 
JackBay VCold 0.50 0.52 0.47 

Pigot VCold 0.23 0.07 0.07 

Jackpot VCold 0.25 0.53 1.01 

  
AVERAGE 
= 0.49 0.53 0.65 
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Exploring Landscape Predictors of Thermal Regimes and Thermal Sensitivity: 

 

The analyses described above generated a large list of potential temperature metrics that could 

be used to described both the current thermal regime (including the mean and variance for both 

the full incubation period and the three mid-winter months (December-February) for the 

minimum, mean, and maximum daily air temperatures; counts of days during the incubation 

period when water temperatures exceeded 2 °C (warm days) or were below 0.5 °C (cold days)) 

and each watershed’s thermal sensitivity (described above) which was calculated for both the full 

incubation period and the 3 mid-winter months. Many of these metrics were highly correlated, 

suggesting that time-consuming analysis of each metric would be redundant. To narrow the list 

of metrics, we conducted a Principle Component Analysis (PCA) from which we selected a 

number of thermal metrics for further analysis. Our first PCA showed that metrics based on the 

minimum, mean, and maximum daily air temperatures were always highly correlated so the 

minimum and maximum metrics were dropped from the analysis and the PCA was repeated 

(Figure 8).  

 

We also derived a large number of potential predictor variables from available GIS coverages 

of the Prince William Sound area. The outline of each watershed above our study sites was 

delineated from the U.S. Geological Survey (USGS) 5-m interferometric synthetic aperture radar 

(IFSAR) 5m digital elevation model (DEM) using spatial analyst tools in ArcGIS 10.5 

(Environmental Systems Research Institute, Redlands, CA, USA). Catchment lake and stream 

coverage was calculated with data from the USGS National Hydrography Dataset (U.S. 

Geological Survey, 2013). Land cover (vegetation) statistics were calculated using the USGS 

National Land Cover Database (NLCD) (Homer et al. 2015). Surficial geology statistics were 

calculated using geologic mapping data from USGS [Wilson et al., 2008]. The geologic layers 

needed to be simplified and combined because, often, just one or two watersheds would include 

some area of a given geologic mapping unit. Further details are given in Table A1, in the 

appendix. Some of the NLCD metrics were also combined, as follows: both woody-wetlands and 

emergent (herbaceous) wetlands as “wetlands”; grass and sedge dominated areas as “grassy”.  

 

Many of the landscape predictor metrics were highly correlated, and would thus violate 

assumptions of independence in subsequent parametric multiple linear regressions. To narrow 

the list of potential variables, we conducted a PCA and selected a subset of variables to be used 

in subsequent analyses. We conducted a first PCA and used those results to eliminate a large 

number of potential variables and then used the remaining variables in a final PCA (Figure 9).  

 

In general, the PCA analysis of the watershed predictor variables showed relatively weak 

explanatory power, with the first two eigenvectors explaining only 49.2% of the total variation in 

the dataset (Figure 8). Large watersheds that included high elevation areas with relatively high 

proportion of the watershed area in glaciers or perennial snow tended to fall toward the right side 

of the first axis (PC1). Those watersheds also had large proportion of their areas dominated by 

barren (unvegetated) or grassy vegetation and had relatively high annual precipitation. Small 

watersheds with lower elevation and higher annual mean temperatures tended to fall toward the 

left on PC1. Those watersheds also had an abundance of lakes, wetlands, and coniferous forest 

(Figure 9) 
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Figure 8: Final PCA on reduced list of potential temperature metrics. Abbreviations are as 

follows: INC=incubation period; DJF=December, January, and February; ObsSens=observed 

thermal sensitivity; NSCSens=best model using the Nash-Sutcliffe Coefficient objective 

function; ATUSens=best model using the ATU objective function; SUMSens=summer (non-

freezing air temperature) linear sensitivity. 
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Figure 9: Final PCA on reduced list of potential predictor variables derived from various GIS 

layers available for the study site. Abbreviations are as follows: PPT=PRISM derived 

precipitation; Temp=PRISM derived temperature; Till=glacial drift and deposits; 

Glacial=perennial ice and snow cover; Lakes=Lakes, ponds, and streams. 

 

 
 

 

We used linear regression to relate thermal metrics to landscape variables.  We first compared 

each watersheds score on PC1 with the thermal sensitivity observed between the warmest 

(WY2016) and coldest (WY2017) years. PC1 was a poor predictor of the watersheds’ thermal 

sensitivity (Figure 10A). Overall, the regression model using PC1 to predict thermal sensitivity 

over predicted the sensitivity of groundwater dominated streams that were relatively insensitive 

to changes in air temperature and under predicted the sensitivity of streams with large shallow 

lakes in their watersheds and where observed thermal sensitivity was high (Figure 10B). 
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Figure 10: A) Regression fit between final PCA scores for each site and that site’s observed 

thermal sensitivity, and B) fit between observed thermal sensitivity and the sensitivity 

predicted from a simple linear regression model using PC1 as the predictor variable.  
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We further examined a subset of variables with high loadings (negative or positive) on PC1 

for their direct influence on observed thermal sensitivity (Figure 11A-D). Relationships with 

individual variables tend to be weak. Clearly, our data include only a few large watersheds. 

While the largest watersheds did have low thermal sensitivity, so too did at least some 

watersheds across the full range of sizes we sampled. Both elevation and mean temperature 

appear to be more strongly related to thermal sensitivity, with stream temperatures in watersheds 

that have higher mean elevation and lower mean annual air temperature being less sensitive to 

increases in air temperature. Similarly, the few watersheds with a substantial proportion of area 

in perennial ice and snow also had low thermal sensitivity. 

Figure 11A-D: Relationship between individual predictor variables with high loadings on PC1 

and the observed thermal sensitivity among the 14 study sites in Prince William Sound.   
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Given the relatively poor performance of PC1 to predict the observed thermal sensitivity, we 

turned to multiple linear regression in an attempt to relate the landscape variables to the thermal 

metrics. We first used a stepwise variable selection to objectively identify the best predictor 

variables. We used a significance level of 0.15 for variables to both enter the model and stay in 

the model in subsequent steps; variable selection ended when no additional variables could either 

be added or removed from the model. The model results were better, with the slope of the 

regression between the observed and predicted thermal sensitivity much closer to 1.0 and an r2 of 

0.64 (Figure 12). However, some variables included in the model appear spurious (Figure 13A-

D). For example, we see no reason that the proportion of the watershed in coniferous forest 

would influence thermal sensitivity of stream water over the incubation period when that area 

ranges from 0% to only 6% and when shade should have little effect on stream temperatures. 

Similarly, we do not have a mechanistic explanation for why the proportion of the watershed that 

had either volcanic, sedimentary, or a combination of these parent materials would be related to 

thermal sensitivity. We have very uneven distribution of watersheds with high relative areas of 

either wetlands or lakes and ponds, however, their presence is clearly related to high thermal 

sensitivity among the watersheds we sampled (Figure 13A-D).  

 

Figure 12: Stepwise multiple linear regression fit between observed thermal sensitivity and the 

sensitivity predicted from the regression model.  
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Figure 13A-D: Relationship between individual predictor variables selected in the stepwise 

multiple linear regression and the observed thermal sensitivity among the 14 study sites in 

Prince William Sound.   

 

  
 

Finally, given the relatively poor performance of PC1 to predict the observed thermal 

sensitivity, and the high number of apparently spurious variables included through the stepwise 

regression procedure, we selected a handful of variables for which we could hypothesize a 

mechanistic relationship. We selected only from those variables that either showed high loadings 

on PC1 or were included in the stepwise model selection. We used these variables in a multiple 

linear regression to predict the observed thermal sensitivity. Overall, the model performed well 

with an r2 of 0.69 without any variables that we had previously identified as generating likely 

spurious relationships (Figure 14).  
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Figure 14: Fit between observed thermal sensitivity and a multiple linear regression model 

parameterized with user-selected variables.  

 

 
 

The model is reasonably parsimonious, however, several variables make relatively small 

contributions to the overall model fit as judged by the incremental increase in the cumulative r2 

as each new parameter is added to the model, and the parameter significance judged by the 

probability of a greater t-value in the final model (Table 6). 

 

Table 6: Fit between observed thermal sensitivity and a multiple linear regression model 

parameterized with user-selected variables.  

 

Parameter 
Final 

Estimate 
Cumulative 

r2 
Final 
P > t 

Intercept 0.235  0.059 
Wetlands 1.161 0.554 0.004 
Lakes & 
Ponds 2.213 0.609 0.202 
Glaciers -0.925 0.658 0.324 

WS Area 0.000 0.695 0.174 
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We conducted similar analyses to find the best landscape predictor variables to project 

estimated thermal sensitivities derived from the best-fit regression models. We used those 

regression models and predicted the change in water temperature that might occur from a 4 °C 

increase in air temperatures. The language describing the results of the multiple linear 

regressions can be a bit confusing because we are now using a “predicted thermal sensitivity” 

and attempt to model that sensitivity using landscape predictor variables which then results in a 

landscape model for the “predicted thermal sensitivity” across the watersheds of Prince William 

Sound. We refer to these as the “Actual Predicted” and the “Model Predicted” thermal 

sensitivities on the x- and y-axes of the following graph (Figures 15).  

As with the previous analyses, the multiple linear regressions identify a small number of 

landscape variables that provide high explanatory power within our dataset. These include either, 

or both variables for the proportion of the watershed area with wetlands or open water (Figures 

15). These results satisfy expected mechanistic relationships, in which large areas of open water 

are exposed to solar radiation during the long, sub-arctic summer days leading to very warm 

summer temperatures. Also, ice that formed on the lakes and in the wetlands must melt in the 

spring before water begins to warm. However, average winter temperatures are close to freezing 

and during recent warm winters, ice cover has been thin and transient in low elevation 

watersheds in Prince William Sound and on the Copper River Delta. Loss of ice cover in the 

winter or early in the spring also leads to increased thermal sensitivity. 

The stepwise variable selection procedure also includes landscape predictor variables in the 

regression model for which mechanistic relationships are unclear. These may result from 

spurious relationships and thus not be indicative of any mechanistic process. It is also possible 

that the underlying correlation structure within our dataset may allow the regression model to 

include a variety of effects from other variables that are not, themselves, selected for the model. 

At any rate, we do not currently have good mechanistic explanations for why PRISM minimum 

watershed temperatures might be related to the thermal sensitivity of the stream water to changes 

in air temperature (Figures 15).  
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Figure 15: A) Comparison among thermal sensitivity predicted by the model with the best NSC 

objective function and the stepwise multiple linear regression, B-D) relationship between 

individual predictor variables and the thermal sensitivity. 
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Finally, despite substantial effort to generate different (and potentially independent) measures 

of thermal sensitivity, our measures of thermal sensitivity over the incubation period were 

themselves correlated. Thus, models that had high explanatory power for one measure of thermal 

sensitivity often worked well for other measures. Compare for example, the model with user-

selected variables for the observed thermal sensitivity between WY2016 and WY2017 (Figure 

14) with the predicted sensitivity from the models that provided the best fit to mean daily air 

temperatures (the NSC objective function; Figures 15 and 16). 

 

Figure 16: Fit between the actual predicted thermal sensitivity from the models that provided the 

best fit to mean daily air temperatures (the NSC objective function) and the modeled thermal 

sensitivity using a multiple linear regression model parameterized with user-selected 

landscape predictor variables.  
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Projecting Thermal Sensitivity across Prince William Sound: 

We used the predictive models described above (Figures 14 & 16) to project thermal 

sensitivities for Hydrologic Unit Code 6 (HUC6) watersheds of Prince William Sound (Figures 

17 and 18). Where HUC boundaries are coincident with the land-ocean interface, the HUC 

usually includes many smaller, disconnected watersheds, each with its own outlet to the ocean. 

Thus, the landscape predictor models developed for discrete watersheds give only a general 

potential thermal sensitivity for all watersheds within each HUC. Individual watersheds might 

have very different thermal sensitivities.  

 

Figure 17: Project thermal sensitivities for Hydrologic Unit Code 6 (HUC6) watersheds of 

Prince William Sound based on observed stream water sensitivities to changes in observed 

air temperatures between the water years 2016 (warm) and 2017 (cold). 
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Figure 18: Project thermal sensitivities for Hydrologic Unit Code 6 (HUC6) watersheds of 

Prince William Sound based on thermal sensitivities predicted from best fit models using the 

NSC objective function and a 4° C increase in air temperature.  
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Potential impacts of climate change on water temperature: 

 We used the air-water regression models to obtain an estimate of potential climate change 

impacts to water temperature at our study sites. To perform this analysis, we calculated day-of-

year average temperatures, effectively a four-year daily average, for all 365 days of the calendar 

year (29 February was excluded) using four time series of mean daily data: Observed, Modeled, 

Scenario 1, and Scenario 2.  

The observed time series was generated from the daily mean water temperature data we 

collected at each site during the entire study period. The modeled time series was generated from 

air temperatures during the study period using the “best” air-water temperature regression model 

fitted for each site, as described in the Thermal Sensitivity section. Scenarios 1 and 2 were also 

generated using the best regression model for each site, however, we raised the input air 

temperature data by 4 °C as compared to the study period air temperature, representing a 

potential future climate scenario.  

Although the same air temperature data were used at each site for Scenario 1 and 2, 

different coefficients were used to calculate water temperature during spring and early summer 

to represent two different snow melt scenarios. Scenario 1 used two sets of coefficients, one 

fitted to the seasonal meltwater hysteresis observed during the study period and one fitted to 

autumn cooling temperature limb when thermal sensitivity was higher. By accounting for 

seasonal meltwater hysteresis, the Scenario 1 model generated lower water temperatures in the 

spring than in the autumn at the same air temperature. The Scenario 2 model used only the 

coefficients fitted to the autumn cooling limb for each site, approximating a scenario where 

meltwater hysteresis was absent. This model simulated a rain-dominated precipitation regime, a 

state that is anticipated to be increasingly present at lower elevations and sites more proximate to 

the Gulf of Alaska with climate change. We calculated the differences between each of the future 

Scenarios and the modeled day-of-year average temperature for each site in order to identify 

times of year with the most and least water temperature response to future climate warming.   

Observed and modeled temperatures were similar, indicating good regression model fit 

(Table 7. and Figure 19). Day-of-year mean water temperature was elevated by up to 7.4 °C 

under PC4 1, the warming−snow scenario. The average change across all sites was 2 °C, 

indicating the average stream warmed half as much as the air temperature. On 25% of days, the 

water temperature change was less than 1 degree under Scenario 1. We projected greater 

warming under Scenario 2, the warming−no snow scenario. The combination of 4 °C warmer air 

temperature and no meltwater hysteresis resulted in an average water temperature increase of 2.6 

°C and a maximum increase of more than 10 °C as compared to modeled day-of-year water 

temperatures during the study period.    

 

 

 

 

Table 7. Day-of-year temperature statistics calculated from air temperature and four 

water temperature data sets: Observed, Modeled, Scenario 1(S1), and Scenario 2 (S2).  

n=5,110 Temperature Data Types (°C)   

Air  Observed  Modeled  
S1 

(snow)  

S2 (no 

snow)  

Differenc

e S1 – 

Modeled 

Differenc

e S2 –

Modeled 
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Min -7.8 0.1 0.2 0.5 1.2 +0.0 +0.1 

25% 0.0 2.0 2.3 4.1 4.8 +1.0 +1.4 

Median 4.2 4.2 4.2 0.5 7.3 +1.7 +2.4 

50% 5.0 5.3 5.3 7.4 8.0 +2.0 +2.6 

75% 10.6 7.9 7.8 9.6 9.7 +2.7 +3.6 

Max 15.6 19.1 19.0 23.3 23.3 +7.4 +10.1 

 

Figure 19. Day-of-year water temperatures for the study sites generated from 

observed (black), modeled (gray), Scenario 1 (blue), and Scenario 2 (orange) data.  

 

 
 

 

Potential impacts of climate change on duration of egg incubation: 

To better anticipate potential climate change impacts on the duration of incubation for 

Coho Salmon eggs, we modeled incubation during the study period and under the two warming 
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scenarios described above. We calculated duration of incubation with an empirically-derived 

Bělehrádek model (Alderdice and Velsen 1978) that was developed by Beacham and Murray 

(1990) and modified by Sparks et al. (2018). Beacham and Murray fitted 10 models to 

development data collected for Coho Salmon embryos, and determined the log-inverse 

Bělehrádek model was among the best-fitting models (r2 = 0.98) across a range of mean 

incubation temperatures (1.5 to 12°C). Sparks et al. modified the Beacham and Murray approach 

by solving for the inverse of the original function, which they described as the daily “effective 

value.” The effective value model equation is: 

Eq. 1  

𝐸𝑖 =
1

exp⁡(7.018 − 1.069 ∗ log𝑒(𝑇𝑖 + 2.062))
 

where Ei is the relative daily effective value, which has a range of 0–1, and Ti is the day-of-year 

mean water temperature (°C) selected from one of the four data time series described in the last 

section: Observed, Modeled, Scenario 1, and Scenario 2. 

We calculated the duration of incubation for early, mid, and late spawning Coho Salmon 

by counting from the assumed spawn date until the date fry emerge from the gravel (when E=1), 

as predicted by the effective value model. Based on our observations of spawning adult salmon 

in the study area, we estimated an early spawn date of September 15th, a middle spawn date of 

October 15th, and a late spawn date of November 15th. Spawn date almost certainly varied by 

stream and water temperature regime during the study period, but here we applied all three dates 

to all sites because Coho Salmon are likely to adapt spawn timing in the future in response to 

changing environmental conditions (Crozier et al. 2008). We applied a Welch two-sample t-test 

to test the hypothesis that the duration of incubation was the same during the study period and 

each future scenario.  

 The mean duration of incubation calculated with observed and modeled day-of-year 

water temperatures varied by less than 12 days across all the sites, indicating good model fit 

during the study period (Figure 20). Interestingly, the mean duration of incubation calculated 

from modeled temperatures was nearly identical for eggs laid by mid and late spawning fish. 

Duration of incubation was two to three weeks shorter for eggs laid by early spawning fish 

(Table 8). 
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Figure 20. Duration of incubation at each study site modeled from observed, 

modeled, Scenario 1 (warming−snow), and Scenario 2 (warming−no snow) day-of-

year mean water temperatures using a spawn date of September 15 (top), October 15 

(middle), and November 15 (bottom).  

 
Table 8. Mean incubation duration and temperature, and mean emergence date 

calculated from four day-of-year temperature data series (Observed, Modeled, 

Scenario 1, and Scenario 2) for three spawning periods at all the study sites.  

Spawn 

Timing 
Data Type 

Mean 

incubation 

duration (days) 

Mean 

temperature 

(°C) 

Mean 

emergence 

date 

Early 

(Sept. 

15) 

Observed 185 3.4 3/18/2017 

Modeled 184 3.4 3/16/2017 

Scenario 1 114 6.8 1/6/2017 

Scenario 2 114 6.8 1/5/2017 

Mid 

(Oct. 

15) 

Observed 210 2.7 5/11/2017 

Modeled 205 2.8 5/6/2017 

Scenario 1 145 4.9 3/8/2017 

Scenario 2 136 5.3 2/26/2017 

Late 

(Nov. 

15) 

Observed 206 2.8 6/7/2017 

Modeled 200 2.9 6/1/2017 

Scenario 1 159 4.2 4/22/2017 

Scenario 2 144 4.8 4/7/2017 
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The future warming scenarios corresponded with a significant (t > 6.2, df = 23, p < 

0.00001) reduction in duration of incubation (Figure 21). The mean duration of incubation was 

57 days shorter under Scenario 1, the warming−snow scenario, as compared to the study period. 

The eggs of early spawning fish were most affected (a 70 day reduction) while eggs of late 

spawning fish were least affected (a 41 day reduction), indicating that for Scenarios 1 and 2 

water temperatures warmed more in late September and early October than March or April.  

Springtime warming was greater under Scenario 2, the warming− no snow scenario, 

when the mean duration of incubation was reduced by 65 days as compared to the study period. 

Duration of incubation was nearly identical under the 2 scenarios for the eggs of early spawning 

fish because alevin were projected to emerge from the gravel during the winter, before melting 

occurred under the Scenario 1. The offspring of mid spawning fish typically emerged earlier 

under the Scenario 2 as compared to the Scenario 1, but the difference was not significant (p = 

0.31). For the offspring of late spawning fish, duration of incubation was significantly (t=2.2, 

df=25, p=0.04) reduced under Scenario 2 as compared to Scenario 1. The greatest difference was 

observed at Jackpot Lake, a cold and snowy site that was high in elevation, where emergence 

was up to one month earlier under Scenario 2.  

 

Figure 21. Dots represent duration of incubation at each site generated from 

observed, modeled, Scenario 1 (warming−snow), and Scenario 2 (warming−no snow) 

day-of-year mean water temperatures for the eggs of early (September 15), mid 

(October 15), and late (November 15) spawning salmon. Bars represent the mean for 

each group. 
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Analysis of potential future maximum temperatures: 

For Alaska’s warmest watersheds, maximum summer temperatures may become increasingly 

seasonally unfavorable for cold-water fish (including salmonids) with increasing climate 

warming, a habitat feature that is already common for many salmon watersheds at lower 

latitudes. As long as fish within a population have habitat options for carrying out their life 

history (spawning, incubation, rearing, migration to and from the ocean), movement between 

favorable habitats (and away from unfavorable habitats) can allow for productive populations. 

 

We used the regression equations relating mean weekly air temperature to mean weekly 

stream temperature to project daily time series of stream temperatures under a warmer climate 

when air temperatures were 4° C warmer than observed during our study. We calculated the 7 

day running average of the daily average (7DADA) from these time series and then used 

multiple-linear regression to relate projected future 7DADA to watershed characteristics. 

Perhaps not surprisingly, the proportion of the watershed area in lakes and ponds and the 

proportion of watershed area in wetlands were reasonably good predictors (Figure 22), although 

our landscape model substantially under-predicted the temperature of our warmest site, Stump 

Lake. Clearly, despite frequently overcast days, occasional cloud-free days combined with 

indirect solar radiation during the long, sub-arctic summer days substantially warmed exposed 

water – especially in large shallow lakes leading to high summer time maximum temperatures.  

 

Sites at three of our studied watersheds had surprisingly high 7DADA during the 4-year 

study. We followed Mantua et al. (2010) who used 21° C as a critical weekly average 

temperature threshold for thermal migration barriers for salmonids in Washington State. One 

site, Stump Lake, already exceeds this temperature and the 7DADA is expected to increase to 

25° C under a warming climate. Two sites, Jackpot Lakes and Solf Lake Outlet had 7DADA in 

excess of 16° C and are expected to increase to 18° C in the future. 

 

We used our landscape model from Figure 22 to project a likely response surface for future 

7DADA (Figure 23). Among our study sites, the proportion of the watershed area in lakes ranged 

from 0% to 12% and wetlands ranged from 0% to 49%. Clearly, watersheds with large shallow 

lakes are likely to exceed the 21° C threshold in the future; the proportion of wetland area also 

contributes to future climatic vulnerability. There is substantial uncertainty in our model 

projections, with 7DADA for some sites either substantially under predicted or over predicted.  

 

We used the predictive model (Figure 22) to project thermal sensitivities for Hydrologic Unit 

Code 6 (HUC6) watersheds of Prince William Sound (Figures 24). Where HUC boundaries are 

coincident with the land-ocean interface, the HUC usually includes many smaller, disconnected 

watersheds, each with its own outlet to the ocean. Thus, the landscape predictor models 

developed for discrete watersheds give only a general potential thermal sensitivity for all 

watersheds within each HUC. Individual watersheds might have very different thermal 

sensitivities.  
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Figure 22: A) Comparison between the landscape-based model of the maximum 7-Day 

Running-Average of the Daily Average temperature (7DADA) and the 7DADA predicted for 

the 14 study sites from the regression model with the best NSC objective function, B-C) 

relationship between individual predictor variables and the 7DADA. 
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Figure 23: Response surface from the landscape model relating the proportional area of lakes (x-

axis) and wetlands (y-axis) to the predicted future 7DADA (contours). The region exceeding 

the 21° C critical temperature threshold (Mantua et al., 2010) is shaded pink. The 14 study 

sites are overlaid on the response surface, based on the actual area of lakes and wetlands in 

each subtending watershed. The 8 sites with more than 1% lake area or 5% wetland area are 

identified and the actual projected future 7DADA is given (circled numbers) to illustrate how 

model uncertainty influences the ability to project climatic vulnerability to the larger 

landscape. 
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Figure 24: Project future maximum of the 7-day running average of the daily average 

temperature for Hydrologic Unit Code 6 (HUC6) watersheds of Prince William Sound under 

a 4° C increase in air temperature.  
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Tidal Influence on Stream Temperatures: 

We observed unexpected temperature fluctuations at some of our study sites over the course 

of the study, with occasional increases in stream and streambed temperatures lasting many hours 

over a series of successive days over the winter incubation period (Figure 25A). The regularity of 

these warm-water pulses made us curious if they could result from intrusion of tidal waters 

during the highest, or spring tides. We compared tidal ranges in typical mean ocean temperatures 

over these periods and found that we only observed the abrupt changes in temperature on days 

with very high tides (exceeding 4.5 m at the Cordova AK tide gage) (Figure 25B). Further, the 

temperature spikes reached almost exactly the mean ocean temperature.    

Figure 25: A) Bed-sediment water temperatures at the upper limit of the intertidal zone showing 

tidal influence (sharp vertical departures from the temperature trend) compared to mean daily 

ocean temperature from 2014 to 2018 (several months of missing ocean temperature data 

during the winter 2014-15 forced the use of a multi-year mean for comparison purposes). B) 

Maximum daily tidal height at Cordova, AK. Tides exceeding 4.5 m inundated the stream at 

the monitoring site leading to sharp rises in temperature. Note:  the time periods graphed here 

were much warmer than historical averages because the “Blob” (2013 to 2016) resulted in 

much warmer than average ocean temperatures in the north-east Pacific Ocean. 

 
 

Pink and Chum Salmon spawn extensively within the intertidal zone which can provide a 

large proportion of the spawning habitat available throughout Prince William Sound and south-

east Alaska where stream networks drain small watersheds in the steep coastal mountains. Low 

gradient reaches are limited to short distances from the ocean, beyond which stream gradients are 

typically too steep and bed sediment too coarse to support spawning. Also, upstream migration is 

often blocked by waterfalls a short distance from the ocean. Given these restrictions, the use of 

the intertidal zone may substantially increase the total amount of spawning habitat available. 

This is certainly true in the fiords of Prince William Sound where, in some streams, 45% 

(Thorsteinson et al., 1971) to as many as 75% of the Pink Salmon (Helle, 1970) and 90% of the 

Chum Salmon (Thorsteinson et al., 1971) spawn in the intertidal zone. Further, strong preference 

for the intertidal zone occurs even when freshwater spawning habitat is accessible and 
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uncrowded (Thorsteinson et al., 1971). Thus, our results raise the possibility that, over the 

incubation period, the thermal regimes in the lower reaches of streams used by spawning salmon 

in Prince William Sound may be influenced by the impacts of climate change on both ocean 

temperatures in the Gulf of Alaska and stream temperatures of the freshwater ecosystem.  

The intertidal zone is a complex habitat with steep environmental gradients in both space and 

time that substantially influences the success of spawning salmon. Height above the low tide line 

(Mean Lower Low Water; MLLW) determines the duration of tidal inundation which in turn 

influences salinity, water temperature, and dissolved oxygen, and indirectly influences the 

amount of fine sediment in the streambed. The direct effects of salinity can be substantial. In a 

laboratory study that simulated tidal exposure to sea water salinity of 28 ppt, Bailey (1966) 

showed that 50% mortality of salmon embryos would occur if redds were inundated with salt 

water for 6 hours twice a day which would corresponding to two tidal cycles with a 2.1 m tidal 

height. Longer duration inundation increased mortality but saltwater exposure of 4 hours twice a 

day, corresponding to a 3.0 m tide, had no adverse effect. Using these data, and applying them to 

Olsen Ck. (Fig. 26), we would expect that salinities and inundation duration in the upper 525 m 

of the intertidal zone would have no effect on Pink Salmon embryos. Further, high embryo 

survival would be expected from 525 m to 750 m. Mortality would exceed 50% in the lowest 

reaches of the intertidal zone and in fact, little spawning activity is observed. 

Given our preliminary results and the extensive use of the intertidal zone for spawning, we 

investigated the potential thermal sensitivity of the surface temperature of Prince William Sound 

using data recorded at the West Orca Bay Buoy (60.584 N 146.805 W; National Buoy Data 

Center, Station 4605050) in central-western Prince William Sound. During the summer, the 

ocean surface temperature appeared quite sensitive to air temperatures (Figure 27). In contrast, in 

winter, weekly-average ocean-surface temperatures never got colder than ~ 4 °C during the 

period of study and when air temperatures were below ~5 °C, the ocean surface temperature was 

uniform over time, suggesting that, during the winter, surface ocean temperatures are decoupled 

from air temperature. Two factors likely account for these differences. First, the relatively high 

sensitivity of air temperature during the summer appears to result from a stratified ocean, with 

the surface water heavily influenced by freshwater runoff from snow and ice melt (see Figure 28 

from Campbell 2018). This lens of fresher water floats at the surface of PWS and due to 

stratification, it can heat without mixing with deeper, colder and saltier ocean water. This 

freshwater lens disappears in winter because cold temperatures stop snow and glacier melt. 

Without stratification, the depth of the mixing layer increases markedly, from only a few meters 

in summer to greater than 50 m by late winter (Campbell, 2018). The increase in mixing depth 

provides a large thermal reservoir that strongly damps changes in water temperature that might 

occur at the surface. Thus, ocean temperatures stabilize around 4 or 5 °C and by late winter, both 

temperature and salinity are relatively uniform over depth (see Figure 28 from Campbell 2019). 
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Figure 26: Depiction of the intertidal zone of Olsen Creek. The longitudinal gradient of the 

creek averaged over both pre- and post-1964 earthquake surveys was 0.399% (Thorsteinson 

et al., 1971, Table 3, pg. 206) which corresponds to a channel distance of 1275 m from the 

elevation of the annual highest tide (4.95 m) to mean lower low water (MLLW; 0.00 m). 

Tidal heights and the percent of the incubation period (1 Sept to 15 May) over which any 

given elevation is inundated by sea water were calculated from Cordova AK tidal predictions 

corrected for the average of the high- and low-tide offsets at Comfort Cove, Port Gravina. 

Embryo survival plotted on to the channel distances that would be inundated by sea water for 

the percentage of the incubation period corresponding to the inundation durations and 

survivals determined in a laboratory-simulated tidal environment 

 

 

It is beyond the scope of this project to explore how ocean temperatures in the Gulf of 

Alaska, and in Prince William Sound in particular, will respond to climate change. However, 

these preliminary results strongly suggest that the incubation environment to which salmon 

respond is highly complex and future changes in that environment caused by a changing climate 

will respond to both effects within the terrestrial watershed and freshwater ecosystem and well as 

the Pacific Ocean. 
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Figure 27: Relationship between air temperature and ocean temperature measured at the West 

Orca Bay Buoy. Air temperatures are recorded 4 m above the ocean surface; ocean 

temperatures are measured 0.6 m below the ocean surface. (National Data Buoy Center 

https://www.ndbc.noaa.gov/station_page.php?station=46060&uom=M&tz=STN, Station 

46060 located at 60.584 N 146.805 W (60°35'1" N 146°48'19" W, data downloaded on 19 

Feb, 2019). 

 

 
  

https://www.ndbc.noaa.gov/station_page.php?station=46060&uom=M&tz=STN
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Figure 28. Ocean temperature (left) and salinity (right) trends for 4 regions (Gulf of Alaska or 

GOA, central PWS or CS, eastern PWS or E, and the northwestern PWS or NW) for each 

day of the year (x-axis) and over depth (y-axis). (Figure 3, page 46, Campbell, 2018).  

 

  



 

54 
 

 

References Cited: 

 

Adelfio, L. A. 2016. Geomorphic and climatic controls on water temperature and streambed 

scour, Copper River Delta, Alaska: Implications for understanding climate change impacts to 

the Pacific salmon egg incubation environment. M.Sc. thesis, Water Resources Graduate 

Program, Oregon State University, Corvallis. doi:10.1017/CBO9781107415324.004. 

 
Adelfio, L.A., Wondzell, S.M., Mantua, N.J. and Reeves, G.H., 2018. Warm winters reduce landscape-
scale variability in the duration of egg incubation for Coho Salmon (Oncorhynchus kisutch) on the Copper 
River Delta, Alaska. Canadian Journal of Fisheries and Aquatic Sciences https://doi.org/10.1139/cjfas-2018-

0152 
 

 

 

Alderdice, D.F., and Velsen, F.P.J. 1978. Relation between temperature and incubation time for   

eggs of Chinook Salmon (Oncorhynchus tshawytscha). J. Fish. Res. Board Canada 35(1): 69–75. 

doi:10.1139/f78-010. 

  
Angilletta Jr, M.J., Ashley Steel, E., Bartz, K.K., Kingsolver, J.G., Scheuerell, M.D., Beckman, B.R. and 
Crozier, L.G., 2008. Big dams and salmon evolution: changes in thermal regimes and their potential 
evolutionary consequences. Evolutionary Applications 1: 286-299. 
 
 

 

 

 

 

 

Beacham, T.D., and Murray, C.B. 1990. Temperature, egg size, and development of embryos 

and alevins of five species of Pacific salmon: A comparative analysis. Trans. Am. Fish. Soc. 

119(6): 927–945. 

 

Bieniek, P.A., U.S. Bhatt, R.L. Thoman, H. Angeloff, J. Partain, J. Papineau, F. Fritsch, E. 

Holloway, J.E. Walsh, C. Daly, M. Shulski, G. Hufford, D.F. Hill, S. Calos, R. Gens. 2012. 

Climate divisions for Alaska based on objective methods. Journal of Applied Meteorology 

and Climatology. 51(7): 1276-1289. 

 

Calkin, P.E., G.C. Wiles, and D.J. Barclay. 2001. Holocene coastal glaciation of Alaska. Quat. 

Sci. Rev. 20:449-461. 

 
Campbell, E.Y., Dunham, J.B., Reeves, G.H. and Wondzell, S.M., 2018. Phenology of hatching, 
emergence, and end-of-season body size in young-of-year coho salmon in thermally contrasting streams 
draining the Copper River Delta, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 76: 185-
191. 
 

 

Campbell, R. W. 2018. Hydrographic trends in Prince William Sound, Alaska, 1960–2016. Deep 

Sea Research Part II, 147: 43-57.   

https://doi.org/10.1139/cjfas-2018-0152
https://doi.org/10.1139/cjfas-2018-0152


 

55 
 

 
Carlson, S.M. and Seamons, T.R. 2008. A review of quantitative genetic components of fitness in 
salmonids: implications for adaptation to future change. Evolutionary Applications 1: 222-238. 
 

 

Cooper, W.S. 1942. Vegetation of the Prince William Sound region, Alaska; With a brief 

excursion into post-Pleistocene climatic history. Ecological Monographs. 12(1): 1-22. 

 

 

 

Crozier, L.G., Hendry, A.P., Lawson, P.W., Quinn, T.P., Mantua, N.J., Battin, J., Shaw, R.G., 

and Huey, R.B. 2008. Perspective: Potential responses to climate change in organisms with 

complex life histories: evolution and plasticity in Pacific salmon. Evol. Appl. 1(2): 252–270. 

doi:10.1111/j.1752-4571.2008.00033.x. 

 
Crozier, L.G. and Zabel, R.W., 2006. Climate impacts at multiple scales: evidence for differential 
population responses in juvenile Chinook salmon. Journal of Animal Ecology 75: 1100-1109. 
 

 

DeVries, P. 1997. Riverine salmonid egg burial depths: review of published data 

and implications for scour studies. Can. J. Fish. Aquat. Sci. 54(8): 1685-1698. 

doi:10.1139/f97-090. 

 
Elliott, J.M., Hurley, M.A. and Maberly, S.C., 2000. The emergence period of sea trout fry in a Lake 
District stream correlates with the North Atlantic Oscillation. Journal of Fish Biology, 56(1), pp.208-210. 
 

 
Chilcote, M., Coleman, A., Colt, S., Kirchner, P., Reeves, G., Rinella, D., Rothwell, E. and Zemke, S., 

Salmon. In Climate Change Vulnerability Assessment for the Chugach National Forest and the 

Kenai Peninsula. Gen. Tech. Rep. PNW-GTR-950. Edited by G.D. Hayward, S. Colt, M.L. 

McTeague, and T. Hollingsworth. US Dept. of Agriculture, Forest Service, Pacific Northwest 

Research Station, Portland, Oregon. 

 

Gay III, S.M. and S.L. Vaughan. 2001. Seasonal hydrography and tidal currents of bays and 

fjords in Prince William Sound. Fish. Oceanogr. 10(Suppl. 1): 159-193. 

 

Hamlet, A.F. and Lettenmaier, D.P. 2007. Effects of 20th century warming and climate 

variability on flood risk in the western US. Water Resources Research  

doi:10.1029/2006WR005099 
  
 

 

 

Hayward, Gregory H.; Colt, Steve; McTeague, Monica L.; Hollingsworth, Teresa N., eds. 2017. 

Climate change vulnerability assessment for the Chugach National Forest and the Kenai 

Peninsula. Gen. Tech. Rep. PNW-GTR-950. Portland, OR: U.S. Department of Agriculture, 

Forest Service, Pacific Northwest Research Station. 340 p. 

 



 

56 
 

Helle, J.H. 1970. Biological characteristics of intertidal and fresh-water spawning pink salmon at 

Olsen Creek, Prince William Sound, Alaska, 1962–63. United States Fish and Wildlife Service, 

Washington, D.C., Special Scientific Report, Fisheries 602: 19 pp. 

 
Hendry, A.P. and Day, T., 2005. Population structure attributable to reproductive time: isolation by time 
and adaptation by time. Molecular Ecology 14: 901-916. 
 

 

 

Holtby, L.B., 1988. Effects of logging on stream temperatures in Carnation Creek British 

Columbia, and associated impacts on the coho salmon (Oncorhynchus kisutch). Canadian Journal 

of Fisheries and Aquatic Sciences 45: 502-515. 

 
Holtby, L.B. and Scrivener, J.C., 1989. Observed and simulated effects of climatic variability, clear-cut 
logging and fishing on the numbers of chum salmon (Oncorhynchus keta) and coho salmon (O. kisutch) 
returning to Carnation Creek, British Columbia. Canadian special publication of fisheries and aquatic 

sciences. 105: 62–81. 

 

 

Homer, C. G., J. A. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. D. Herold, J. 

D. Wickham, and K. Megown (2015), Completion of the 2011 National Land Cover 

Database for the conterminous United States-Representing a decade of land cover change 

information. Photogramm. Eng. Remote Sensing, 81: 345–354. 

 
Isaak, D.J., Luce, C.H., Rieman, B.E., Nagel, D.E., Peterson, E.E., Horan, D.L., Parkes, S. and Chandler, 
G.L. 2010. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in 
a mountain river network. Ecological Applications 20: 1350-1371. 
 
Kinnison, M.T., Unwin, M.J., Hershberger, W.K. and Quinn, T.P., 1998. Egg size, fecundity, and 
development rate of two introduced New Zealand chinook salmon (Oncorhynchus tshawytscha) 
populations. Canadian Journal of Fisheries and Aquatic Sciences 55: 1946-1953. 
 

 

Letcher, B.H., Dubreuil, T., O'Donnell, M.J., Obedzinski, M., Griswold, K. and Nislow, K.H., 

2004. Long-term consequences of variation in timing and manner of fry introduction on juvenile 

Atlantic salmon (Salmo salar) growth, survival, and life-history expression. Canadian Journal of 

Fisheries and Aquatic Sciences 61: 2288-2301. 

 

 

Mann, D.H. and T.D. Hamilton. 1995. Late Pleistocene and Holocene paleoenvironments of the 

North Pacific coast. Quat. Sci. Rev. 14:449-471.  

 

Mantua, N., Tohver, I., and Hamlet, A. 2010. Climate change impacts on streamflow extremes 

and summertime stream temperature and their possible consequences for freshwater salmon 

habitat in Washington State. Clim. Change 102: 187–223. doi:10.1007/s10584-010-9845-2. 

 

Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., and Francis, R.C. 1997. A Pacific 

interdecadal climate oscillation with impacts on salmon production. Bull. 



 

57 
 

Am. Meteorol. Soc. 78(6): 1069-1079. doi:10.1175/1520-0477(1997)078<1069: 

APICOW>2.0.CO;2. 

 

McCullough, D.A., 1999. A review and synthesis of effects of alterations to the water 

temperature regime on freshwater life stages of salmonids, with special reference to Chinook 

salmon. US Environmental Protection Agency, Region 10. EPA 910-R-99-010 

 
Miller-Rushing, A.J., Høye, T.T., Inouye, D.W. and Post, E., 2010. The effects of phenological 
mismatches on demography. Philosophical Transactions of the Royal Society B: Biological 
Sciences 365(1555): 3177-3186. 
 
 

 

Mohseni, O., Stefan, H. G., and Erickson, T.R. 1998. A nonlinear regression model for weekly 

stream temperatures. Water Resour. Res. 34(10): 2685–2692. doi:10.1029/98WR01877. 

 
Neuheimer, A.B. and Taggart, C.T., 2007. The growing degree-day and fish size-at-age: the overlooked 
metric. Canadian Journal of Fisheries and Aquatic Sciences 64: 375-385. 
 
Neuheimer, A.B. and Taggart, C.T., 2007. The growing degree-day and fish size-at-age: the overlooked 
metric. Canadian Journal of Fisheries and Aquatic Sciences 64: 375-385. 
 
Schindler, D.E., Rogers, D.E., Scheuerell, M.D. and Abrey, C.A., 2005. Effects of changing climate on 
zooplankton and juvenile sockeye salmon growth in southwestern Alaska. Ecology 86: 198-209. 
 

Sparks, M.M., Falke, J.A., Quinn, T.P., Adkison, M.D.,Schindler, D.E., Bartz, K.K., Young, 

D.B., and Westley, P.A.H. 2018. Influences of spawning timing, water temperature, and climatic 

warming on early life history phenology in western Alaska Sockeye Salmon. Can. J. Fish. Aquat. 

Sci. doi:10.1139/cjfas-2017-0468. 

 
Tague, C. and Grant, G.E., 2009. Groundwater dynamics mediate low‐flow response to global warming in 

snow‐dominated alpine regions. Water Resources Research doi:10.1029/2008WR0071 

 

Thorsteinson, F.V., Helle, J.H. and Birkholz, D.G. 1971. Salmon survival in intertidal zones of 

Prince William Sound streams in uplifted and subsided areas. In: The Great Alaska earthquake of 

1964: biology. National Academy of Science Publication 1604: 194–219. 

 

Wilson, F. H., C. P. Hults, K. A. Labay, and N. Shew (2008), Digital data for the reconnaissance 

geologic map for Prince William Sound and the Kenai Peninsula, Alaska, U.S. Geol. Surv. Open-

File Rep. 2008-1002. 

 

van den Berghe, E.P., and Gross, M.R. 1984. Female size and nest depth in coho 

salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 41:204-206.  

1139/f84-022. 

 

Zimmerman, C.E., and Finn, J.E. 2012. A simple method for in situ monitoring of 

water temperature in substrates used by spawning salmonids. J. Fish Wildl. 

Manage. 3(2): 288-295. doi:10.3996/032012-JFWM-025. 



 

58 
 

 



 

59 
 

Table Appendix 1: Summary list of geologic map units that were combined into a single map group to describe each study watershed, 

including the Kenai Peninsula, Prince William Sound, and Copper River Delta. Map units follow Wilson et al., 2015. 

Name 

Map 

Unit 

Geologic 

Code Description 

Open Water 102 Water water 

Perennial Snow and Ice 101 Ice ice 

Unconsolidated 

100 Qs Unconsolidated surficial deposits, undivided (Quaternary) 

105 Qat Alluvial and terrace deposits (Quaternary) 

109 Qat Alluvial and terrace deposits (Quaternary) 

115 Qb Beach deposits (Quaternary) 

Landslides and Colluvium 
107 Qls Landslide and colluvial deposits (Quaternary) 

108 Qls Landslide and colluvial deposits (Quaternary) 

Lacustrine 112 Qsl Lacustrine, swamp, and fine silt deposits (Quaternary) 

Glacial drift & deposits 
126 Qm Glacial deposits (Quaternary) 

130 Qag Drift of Neoglacial age (Holocene) 

Siltstones and siltstone 

complexes 

680 Tps Poul Creek Formation, Sedimentary rocks (Tertiary, early Miocene to late Eocene) 

810 Tt Tokun Formation (Tertiary, Eocene) 

820 Tsw Stillwater Formation (Tertiary, Eocene) 

Volcanic 

950 Tos 

Orca Group, Sedimentary rocks, undivided (Tertiary, early middle Eocene to late 

Paleocene 

951 Tovs Volcanic and sedimentary rocks (Tertiary, Eocene) 

2190 KMm McHugh Complex (Cretaceous to Mississippian) 

2700 Kvs Valdez Group, Metasedimentary rocks, undivided (Upper Cretaceous) 

2702 ?? 

Valdez Group, Interbedded metavolcanic and metasedimentary rocks (Upper 

Cretaceous) 

2705 ?? Valdez Group, Metavolcanic rocks, undivided (Upper Cretaceous) 

2710 Kvgs Valdez Group, Schist (Upper Cretaceous) 

1135 Tov Volcanic rocks, undivided (Tertiary, Eocene) 

1136 Top Pillow basalt (Tertiary, Eocene) 

Igneous  1300 Tgg Granite and granodiorite (Tertiary, Eocene) 



 

60 
 

1380 Tmu Mafic and ultramafic plutonic rocks (Tertiary, Eocene and Paleocene?) 
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